Maritime

Shaft alignment and propeller shaft aft bearing performance – recent trends call for action

Recent experience reflects concerns on propeller shaft aft bearing performance on some oil lubricated installations, e.g. ships with single stern tube bearing, during turning conditions involving hard-over steering angles in the upper speed range (MCR). This also coincides with evolving trends comprising of larger and heavier propellers operating at a lower RPM and different types of stern tube lubricants. This technical news aims to elaborate the basic logic, criteria and recommendations associated with propeller shaft aft bearing performance.

Downward bending moment
Figure 1 – Downward bending moment induced during a starboard turn: right handed propeller

Relevant for shipyards, suppliers, owners/managers, flag states and vetting agencies.

The basic concept and industry challenges 

DNV GL rules for shaft alignment (Jan. 2018, Pt.4 Ch.2 Sec.4) are formulated to achieve an acceptable distribution of load on the shaft bearings, and include a hydrodynamic lubrication criteria of the aft bearing. Due consideration is also made to accommodate the bending moment induced by the propeller during continuous operation. 

During extreme transient turning conditions in the upper speed range, exaggerated propeller bending moments are induced, leading to reduction in shaft-bearing contact area and an exponential increase in local pressures and thermal loading (see Figure 1). The expected nature of aft bearing lubrication under these conditions, i.e. a combination of a mixed and boundary type, poses a challenge to retain a hydrodynamic oil film of acceptable thickness. Most of the reported bearing damages (resulting from abrupt overheating) have been observed in the aft most part of the aft bearing, typically during a starboard turn on a right-handed propeller installation.

DNV GL solution

As a part of the continuous rule development process in accordance with the industry demand to cater to evolving design trends and experience, DNV GL has now 

  • revised the main class shaft alignment rules for single stern tube bearing installations, and
  • introduced new optional class notations, Shaft align(1) and Shaft align(2), for oil-lubricated propeller shaft installations.

Shaft align(1) is a basic cost-effective option intended for propulsion systems installed on vessels with conventional hull forms and which incorporates enhanced aft bearing performance during normal and turning operating conditions. 

  • Multi-sloped aft bearing is mandatory
  • Increased propeller bending moment ranging from -30 to +30% MCR torque included in the aft bearing loading criteria 
  • State-of-the-art measurement techniques for installation sighting (laser or equivalent) 
  • Means of warning against incomplete propeller immersion

Shaft align(2) is intended for propulsion systems requiring additional calculations to predict hydrodynamic propeller loads during turning conditions. Typical installations are vessels with non-conventional hull forms such as asymmetric stern and twin skeg.

  • Design-specific hydrodynamic propeller load spectrum and transient forces using CFD
  • FE analysis for transient aft bearing contact pressure and area
  • Hull deflections where applicable
  • Shaft align (1) requirements apply as the basic criteria 

Shaft-aft bearing contact area mapping A
Shaft-aft bearing contact area mapping B
Figure 2 – Shaft-aft bearing contact area mapping: single sloped (upper picture) versus double sloped aft bearing, the colored plots show the shaft-bearing gap

How does the solution make a difference?

The DNV GL shaft alignment class notations and revised main class rules for single stern tube bearing installations introduce additional focus on the impact of transient hydrodynamic propeller downward-acting bending moments, which are induced in turning conditions at MCR speed, on the aft most propeller shaft bearing. 

This is supported by a mandatory requirement for a multi-sloped aft bearing, coupled with an additional aft bearing lubrication evaluation criteria, with an increased bending moment acting downwards on the bearing (30% MCR torque). Compared to a single-sloped bearing, a multi-sloped design better assists in optimizing the shaft-to-bearing contact area and surface pressure in all operating conditions, considering the hydrodynamically-induced propeller bending moments (see Figure 2). 

For Shaft align(2), input from CFD-aided prediction of hydrodynamic propeller moments and forces acting on the aft bearing are used in conjunction with the FE analysis to evaluate the bearing surface pressure and contact area under turning conditions. DNV GL class guidelines linked to the rules provide guidance on the criteria to be followed in this regard. 

Recommendations

DNV GL recommends that operators consider enhanced propeller shaft bearing performance solutions.

The class notations Shaft Align(1) and (2) may be assigned at the newbuild phase or during service in conjunction with a propeller shaft withdrawal. This is particularly recommended for vessels undergoing retrofits or re-metalling of propeller shaft bearings during dry dock.   

References

Contact

For customers: 
DATE – Direct Access to Technical Experts via My Services on Veracity

Otherwise: 
Use our office locator to find the nearest DNV GL maritime office

29 April 2022

IMO maritime safety committee (MSC 105)

The 105th session of the IMO’s Maritime Safety Committee (MSC) was held remotely from 20 to 29 April. A wide range of topics was on the agenda, including the safety of ships carrying industrial personnel, the safety of ships relating to the use of fuel oil, and the consideration of a regulatory framework for maritime autonomous surface ships. Requirements reflecting modern systems for maritime distress and safety communication were adopted and interim guidelines for the safety of ships using fuel cell power installations were approved. The development of interim guidelines for ships using ammonia as fuel were initiated.

  • Maritime
11 April 2022

IMO sub-committee on pollution prevention and response (PPR9)

The 9th session of the IMO’s Sub-Committee on Pollution Prevention and Response (PPR 9) was held remotely from 4 to 8 April 2022. A wide range of topics was on the agenda, including biofouling, ballast water management, black carbon, sewage treatment and marine plastic litter. PPR agreed on draft guidelines on risk and impact assessments of the discharge water from exhaust gas cleaning systems when considering local or regional regulations.

  • Maritime
24 March 2022

SEEMP Part III and the upcoming SEEMP Generator from DNV

Since 2019 ships of 5,000 GT and above have been reporting their fuel oil consumption data mandated by the IMO DCS. From 2023, cargo, cruise and RoPax ships must calculate CII with a required rating of C or better. This means some ships will have to improve their carbon intensity. A verified Ship Operational Carbon Intensity Plan, or SEEMP Part III, is to be kept on board from 1 January 2023 to document how you plan to achieve your CII targets. This statutory news provides an update on the SEEMP Part III and recommends next steps.

  • Maritime
07 March 2022

IMO Sub-Committee on Ship Systems and Equipment (SSE 8)

The 8th session of the IMO’s Sub-Committee on Ship Systems and Equipment (SSE 8) was held remotely from 28 February to 4 March. SSE 8 finalized draft new ventilation requirements for lifeboats and liferafts, and draft new guidelines for the design, construction, installation, testing, maintenance and operation of lifting appliances and anchor handling winches. Good progress was made on the new mandatory requirements to minimize the incidence and consequences of fires on ro-ro passenger ships, and on the work to improve the safety of commercial diving operations.

  • Maritime
14 February 2022

IMO Sub-Committee on Human Element, Training and Watchkeeping (HTW 8)

The 8th session of the IMO’s Sub-Committee on Human Element, Training and Watchkeeping (HTW 8) was held remotely from 7 to 11 February. Highlighting the human element as a key factor both for safety and environmental protection, HTW 8 agreed on a revised checklist for considering the human element in the review, development and implementation of new and existing IMO requirements. HTW 8 also agreed on amendments to the STCW Convention and Code to accommodate the use of seafarers’ electronic certificates and documents.

  • Maritime
View all