Other sectors

A new era for hydrogen energy unveiled by summer students at DNV GL

Jidai graphic
The Jidai concept, which means "new era" in Japanese, produces hydrogen from seawater using floating offshore wind turbines and processing platforms.

How can hydrogen help Japan transition to renewable energy? Students working for DNV GL this summer made the case for the floating installation ‘Jidai’ that produces hydrogen from seawater and wind energy.

Jidai student team
The 2015 Summer Project student team, following their final presentation to DNV GL staff and industry representatives. Back row, from left: Mr Kunikata (Japanese Ambassador to Norway), Remi Eriksen (DNV GL CEO), Kristoffer Bjerkelund, Bjørn K. Haugland (DNV GL Chief Sustainability Officer), Lars-Henrik Nysteen, Morten Aslesen, Katrine Storaker, Christian Carstensen, Adrian Mekki. Front row, from left: Kristina Dahlberg (DNV GL Employer Branding), Are Kaspersen (DNV GL Project Manager), Elsa Härdelin, Daniel Jakobsen, Eirin Fjellanger, Egil Gustafsson, Tadashi Uchihira, Karin Cederberg, Zhenying Wu

Following the 2011 disaster at a nuclear plant in Fukushima, Japan reduced its reliance on nuclear energy and now depends heavily on expensive and imported energy, mainly deriving from finite sources. The country is now determined to become a “carbon-free” hydrogen society generated by wind, solar and hydroelectric sources by 2040, and this forms the background for the 2015 DNV GL summer project.

13 students were selected out of 500 applicants to come up with a solution for offshore production, storage and transportation of renewable hydrogen. The result could not only provide Japan with clean hydrogen, energy independence and a greener environment, but also represents new jobs and freed up space on land.

Jidai: a new era

Hydrogen represents a significant untapped potential for renewable energy. Recent developments in fuel cell technology have promoted hydrogen as an attractive fuel for transportation and residential consumption.

“We have developed Jidai, a concept representing a new era for hydrogen consumption, as a way of harvesting offshore renewable resources and facilitating a complete value chain of clean energy,” says project manager and student Daniel Jakobsen, a 4th year student at NTNU.

The concept uses floating offshore wind turbines to harvest hydrogen from purified seawater, using a process of electrolysis. The extracted hydrogen is compressed and stored, in readiness for transport by tanker to shore (see technical details below). The project is based on existing technology, and the students have estimated the technology will be cost-efficient by 2030. Although perfect for the deep waters off Japan's coastline, the system is easily adapted to a number of offshore destinations world-wide.

The project was presented to DNV GL top management and industry partners at Høvik on 5 August. Japan's ambassador to Norway, Toshio Kunikata also took part to learn about the possible solution for Japan's energy production. 

You can watch the presentation and animation, and download the brochure below.

Sparked industry interest
“The world is facing an energy shift,” said DNV GL Group President & CEO Remi Eriksen following the presentation. “The global energy demand will rise by more than 50% by 2050. We need this energy to be greener, more reliable and affordable. To achieve that, we need to change the way we generate, transmit, distribute and use energy.”

DNV GL and its industry partners could help accelerate hydrogen energy technology to a commercial scale. Oil and gas companies have been especially interested in learning how decommissioned platforms can find new purpose as hydrogen production facilities.

“We need inspiring visions of the future to create new technologies and solutions,” says DNV GL Chief Sustainability Officer, Bjørn K. Haugland. “A green future presents us with plentiful opportunities for innovation.”

The Jidai concept: Utilizing available technologies 

Jidai  is a four-step process: 

  1. Hydrogen production requires water with very high purity, and seawater is therefore desalinated in three energy-efficient steps.
  2. Multiple stacks of polymer exchange membrane (PEM) electrolysers produce high-purity hydrogen and oxygen from water. This gives the plant enough capacity to match the maximal power output of the wind farm. PEM electrolysis is at the heart of Jidai, and the electrolysers are compact and flexible, responding to intermittent power supply on a second to second basis. 
  3. Hydrogen gas is compressed to 700 bar in an ionic compressor to reduce storage volume. The pressure of the gas is gradually increased in five steps, keeping the energy at loss close to zero. 
  4. High-pressure hydrogen gas is stored in a module-based tank system. By using lightweight composite tanks, both weight and cost are reduced. The storage capacity is 400 tonnes of hydrogen at 700 bar, equivalent to three days of average production.

All system components have been specifically chosen to withstand the intermittent power supply from the wind turbines as well as frequent start-stop cycles without undue delay or wear. In addition, a combined battery and fuel cell backup system provides the necessary power for keeping critical equipment in operation when wind power is unavailable. As a result, the wind power can be stored and reactivated according to demand.

Even though the technologies in Jidai already exist, they need to be commercialized further before the concept is applicable. According to calculations, Jidai may be cost-efficient by 2030, well before the due date for Japan's self-sufficiency.

DNV GL Summer Project 2015

DNV GL has held an annual summer project since 2008. Around a dozen fourth year students work to solve a complex and relevant problem. The project runs for seven weeks and is rounded off with a presentation to DNV GL and its industry partners.

This year, the summer project had more than 500 applicants, and 13 highly qualified students within engineering, nanotechnology, economics and renewable energy where chosen to participate. The theme for this year’s project is offshore hydrogen production in Japan.

About DNV GL

Driven by the purpose of safeguarding life, property and the environment, DNV GL enables organizations to advance the safety, efficiency and sustainability of their business. DNV GL provides classification and technical assurance along with software and independent expert advisory services to the maritime, oil and gas, and energy industries. The company also provides certification services to customers across a wide range of industries, including food and beverages, healthcare and automotive.

Combining leading technical and operational expertise, risk methodology and in-depth industry knowledge, DNV GL empowers its customers’ decisions and actions with trust and confidence.  DNV GL continuously invests in research and collaborative innovation to provide customers and society with operational and technological foresight. With origins stretching back to 1864, its reach today is global. Operating in more than 100 countries, DNV GL’s 16,000 professionals are dedicated to helping customers become safer, smarter and greener.