Sources of long-term reference wind data in Ireland and southwest of Scotland: A consistency analysis

When undertaking an analysis of the future energy output of a wind farm, it is paramount to use sources of wind speed reference data which are consistent throughout the historical period considered. Inconsistent and/or short reference data sets can jeopardise and impact the expected financial returns of a project.

In the past, when undertaking energy assessments in the UK and Ireland, DNV would always look at a range of potential sources of long-term reference data, such as Reanalysis data sets and ground-based Meteorological Stations, or indeed indices composed of several of these sources. In recent studies, the informed adjustment from Meteorological Stations and Reanalysis data sets have shown an unsettling divergence, particularly in the northern part of Ireland and southwest Scotland.

Following these findings, DNV has been undertaking a thorough investigation into the consistency of the different data-sets. We have used as reference a series of long site wind data measurement campaigns, which have been proven consistent and are located across Ireland and the southwest of Scotland. Ten sites have been considered, with an average measurement period of 4.5 years.

In previous publications (see 1), DNV has demonstrated MERRA-2 to be in agreement with MERRA across Ireland and Great Britain, and therefore, both Reanalysis data sets have been included in this study. As for Meteorological Stations, DNV has been considering only four Meteorological Stations in Ireland, as consistent for long-term reference use (Aldergrove, Knock Airport, Casement Aerodrome and Cork Airport). These, along with three UK Met Office Meteorological Stations in the southwest coast of Scotland (Machrihanish, Islay Port Ellen and Prestwick Airport), have been looked at.

Investigations show that MERRA-2 exhibits better correlation quality with DNV’s sample of site measurements when compared to long-term ground-based sources and regional indices of stations, see Figure 1[1].

20171212_Sources of long-term reference wind data in Ireland and southwest of Scotland 770x601

Figure 1 – Correlation quality for the considered sites in Ireland based on the coefficient of determination R2. MERRA and MERRA-2 values are calculated using the closest grid cell to each site.


In addition, we have also compared wind speed predictions using MERRA-2, ground-based Meteorological Stations and regional wind indices against the measured consistent site data sets. This was undertaken by dividing the site data and using only half of the data set to predict the wind speed for the whole period. Using this method, wind speed predictions have been compared to actual measured wind speed. The average wind speed prediction errors are presented in the following figure.

20171212_Sources of long-term reference wind data in Ireland and southwest of Scotland 770x591

Figure 2 – Average error in wind speed prediction for the sites analysed in this study using MERRA-2, ground-based Meteorological Stations and regional windiness indices.


As seen in Figure 2, Meteorological Stations present the bigger average error in the prediction of wind speed. This indicates that one or several of these stations are likely to have one or more inconsistencies throughout the period of measurements under consideration. The periods under consideration span across the last 15 years and are, therefore, crucial for any energy assessment long-term analysis.

For this reason, it is DNV’s recommendation that Reanalysis data sets, such as MERRA-2, are considered as primary sources of long-term data in Ireland and southwest Scotland, and that data from Irish Meteorological Stations is considered with extreme care.

Additionally, MERRA-2 Reanalysis data sets have the advantage of representing, by nature, a complete data set with full coverage and a longer measurement period than ground stations, which contributes to the decrease in long-term uncertainties for projects.



DNV in the UK and Ireland

DNV has analysed more than 200 GWs of projects globally throughout the last 30 years, with a team of over 100 wind and solar analysts. Due to its vast experience in the region and the continuous improvements of its global and regional methodologies, DNV can help you with your projects, from the measurement campaign to production. DNV’s recognised excellence and independence makes us the preferred consultancy of most financial institutions.

References

1 – Ebsworth, G. et al, “A review of the performance of MERRA-2: the next era of global long-term reference data”, DNV, Wind Europe Conference, Edinburgh, March 2017.

1 – In Figure 1, comparisons of quality of correlation are presented for three macro-regions. The results are shown in this fashion to better represent the locations of the selected measurements used in this study. The separation between the macro-regions is not to be intended as a precise separation.

12/12/2017 9:00:00 AM