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ABSTRACT
Operators of offshore floating drilling units have limited

time to decide on whether a drilling operation can continue as
planned or if it needs to be postponed or aborted due to oncom-
ing bad weather. With day-rates of several hundred thousand
USD, small delays in the original schedule might amass to con-
siderable costs. On the other hand, pushing the limits of the load
capacity of the riser-stack and wellhead may compromise the in-
tegrity of the well itself, and such a failure is not an option.

Advanced simulation techniques may reduce uncertainty
about how different weather scenarios influence the system’s in-
tegrity, and thus increase the acceptable weather window consid-
erably. However, real-time simulations are often not feasible and
the stochastic behavior of wave-loads make it difficult to simulate
all relevant weather scenarios prior to the operation.

This paper outlines and demonstrates an approach which
utilizes probabilistic machine learning techniques to effectively
reduce uncertainty. More specifically we use Gaussian process
regression to enable fast approximation of the relevant structural
response from complex simulations. The probabilistic nature of
the method adds the benefit of an estimated uncertainty in the
prediction which can be utilized to optimize how the initial set
of relevant simulation scenarios should be selected, and to pre-
dict real-time estimates of the utilization and its uncertainty when
combined with current weather forecasts.

This enables operators to have an up-to-date forecast of the
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system’s utilization, as well as sufficient time to trigger addi-
tional scenario-specific simulation(s) to reduce the uncertainty of
the current situation. As a result, it reduces unnecessary conser-
vatism and gives clear decision support for critical situations.

Keywords: Offshore drilling, Weather window, Simulations,
Design-of-experiments, Probabilistic machine learning, Gaus-
sian process regression, Uncertainty.

INTRODUCTION
Offshore drilling is a complex and expensive operation that

may incur additional costs of several hundred thousand USD
per day due to weather and interrupted or postponed operations.
Prior to and during any offshore operation, the operator assesses
the potential for interruptions based on current weather and
ocean forecasts, previous experience, and simulated resilience of
the rig, the riser stack-up, and the subsea wellhead.

As the operator has limited time between a weather fore-
cast is available and when a decision needs to be taken with re-
spect to continued or aborted operation, the efficiency of acquir-
ing accurate information for a well-informed decision is critical
to avoid unnecessary interruption or delays. It is often necessary
to assess and establish operational limits for specific operations
where the integrity of the riser or well equipment is the limit-
ing factor. This is a complex process where specific rig, riser,
and well information is used to establish several dynamic mod-
els that need to be assessed in relation to one another. In this
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paper we investigate a system where one model has been used to
explore the rig’s response to different weather scenarios and sea-
states, while another is needed to assess the structural integrity
and utilization of the riser and the riser-well connection given
the dynamic response of the rig. These models are complex and
time-consuming, and thus, it is a computational challenge to pro-
vide real-time decision support.

A common approach is to run a lot of these simulations prior
to the operation, and to establish conservative thresholds for op-
erational windows based on worst-case combinations of parame-
ters [1].

There are several drawbacks with this approach:

1. A priori selection of simulation scenarios might result in
a significant portion of the simulation effort being spent
in regions of the response space which are either non-
consequential (i.e. we have a large margin to the critical
utilization level) or heavily over-utilized (i.e. far beyond the
critical utilization level).

2. Dynamic and stochastic nature of the current situation
makes it difficult to assess the forecasted sea-state change
(including uncertainties) with all the relevant simulation re-
sults (and whether all relevant simulations have been run).

3. This often result in a qualitative judgement of the worst
sea-state compared to the assumed most relevant simulation
result(s) – a cumbersome decision process.

When high-fidelity and real-time results for specific scenar-
ios are not available, the safety philosophy is to be conservative
in light of the uncertainty. This paper presents an approach which
mitigate the shortcomings listed above and reduce uncertainty
relevant to the decision context, and thus the need to be overly
conservative.

The current work is based on results presented by Eldevik
and Sætre in [1] which demonstrates how probabilistic machine
learning can be used to optimize simulation efforts prior to oper-
ations. The results presented in this paper is a direct continuation
of that work, and uses the established relation between the envi-
ronmental loads, the response of the rig and the response and
capacity of the riser-well system to enhance the decision support
of the operator in real-time based on current weather forecasts.

SYSTEM DESCRIPTION
For the system under consideration, we want to continuously

assess the structural integrity of the riser stack and the wellhead
for relevant weather scenarios. This require advanced and time-
consuming simulations of the dynamic movement of the drill rig
for all potential sea-states it can experience during operation (i.e.
wave loads and current), its effect on the structural response of
the riser system and wellhead and the system’s capacity as dis-
cussed in [1]. The utilization of this capacity u, is treated as an
unknown function f of a set of relevant parameters xxx

u = f (xxx) (1)

The parameters that dominate the utilization are the sea-
state, described by significant wave height, Hs, wave period, Tp,
and the current velocity, vc, the dynamic position and off-set
from the center, d, and the internal pressure of the riser, pint .

The function f is a mapping of the five-dimensional input
space to the one-dimensional output space, f : R5→ R, and the
challenge is to explore this multi-dimensional input space suffi-
ciently to have the necessary confidence in the estimated utiliza-
tion for all relevant operation- and weather-scenarios.

This paper briefly describes how this exploration has been
done in [1] to optimize the simulation effort for input scenarios
close to the critical , i.e. continued or aborted drilling opera-
tion. Then it continues to expand on this work by suggesting an
approach where additional simulations can be triggered and run
live to reduce unnecessary aborted operations while maintaining
the necessary confidence that the rig and riser-well system can
withstand the forecasted weather scenarios.

SURROGATE MODELS AND ADAPTIVE EXPLORATION
Generally, if f is a time-consuming and computationally ex-

pensive simulation or costly experiment, it is not possible to prac-
tically evaluate f (xxx) for all relevant xxx within the time-frame of
the relevant decision context. Thus, we create a fast-running ap-
proximate model f̂ ≈ f to the real response based on a number
of evaluations { f (xxx1) , . . . , f (xxxN)}, which are able to predict
the response also away from the observed (training) data. This
is what most machine learning (ML) algorithms produce - and is
often referred to as surrogate models.

However, for safety-critical decisions, it is important to be
able to quantify the uncertainty and sensitivity related to predic-
tions from such a surrogate model. Gaussian Process (GP) re-
gression is a probabilistic machine learning model that have two
important traits that support this. A GP can:

interpolate (i.e. make sure that all predictions f̂ (xxxi)= f (xxxi)
match the observations at the training points {xxxi}N

i=1), and

provide an uncertainty estimate on f̂ (xxx) for all predictions
away from the training data xxx/∈ {xxxi}N

i=1.

O’Hagan [2] refer to surrogate models having these traits as em-
ulators.

To establish an emulator that can be used for decision sup-
port, we thus need to evaluate or observe the expensive function
f a finite number of times. Engineers have a tendency to decide
on a factorial approach [3] which explore the input space in a
grid-like manner. This approach is known to be inferior, but is
nevertheless often used because of its simplicity [4]. Eldevik and
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Sætre [1] also show how such an approach is ignorant of the criti-
cal limit of the response, and, thus, spend a significant amount of
the simulation efforts in areas of the state space that have an in-
significant effect on the decision problem (i.e. where a lot of the
simulation effort has been spent where the system is well within,
or far outside, the system’s capacity limit). To mitigate this [1]
utilize an adaptive approach to focus the simulation effort close
to the critical decision limit.

PROBABILISTIC ML - GAUSSIAN PROCESS
As we will use the results and model from [1] the theoreti-

cal description of the GP regression model is paraphrased in this
section. Rassmussen and Williams [5] define the mean and co-
variance function of a real process f (xxx) as

m(xxx) = E [ f (xxx)] (2a)
k(xxx,xxx′) = E

[
( f (xxx)−m(xxx))

(
f (xxx′)−m(xxx′)

)]
(2b)

and write the Gaussian Process as

f ∼ GP(m(xxx),k(xxx,xxx′)). (3)

The GP is completely specified by this mean and covari-
ance functions, and describes a distribution over functions. For
any finite collection [xxx1, . . . ,xxxn] of points xxxi ∈ RD, the distri-
bution of [ f (xxx1, . . . ,xxxn)] is multivariate Gaussian with mean
[m(xxx1), . . . ,m(xxxm)] and covariance Ki, j = k(xxxi,xxx j), and the
marginal distribution of a subsets of the random variables will
also be Gaussian.

Thus, for a data set D of N noisy observations of the real
process, i.e. D = {xxxi,yi}N

i=1 where yi = f (xxxi) + εi and we
assume the noise term εi is i.i.d. normally distributed with
zero-mean and common variance c2, we can infer the distri-
bution of f (xxx∗)|D at unobserved points xxx∗ in the input space.
The predictive posterior distribution at n new inputs fff ∗|D =
[ f (xxx∗1), . . . ,xxx

∗
n]|{yi = f (xxxi)+ εi}N

i=1 is given by

fff ∗|D ∼ N
(
µ fff ∗|D,Σ fff ∗|D

)
(4)

with mean and covariance

µ fff ∗|D = mmm∗+KKK∗
(
KKK∗+ c2III

)−1
(yyy−mmm) (5a)

Σ fff ∗|D = KKK∗∗−KKK∗
(
KKK− c2III

)−1
KKKT
∗ (5b)

where mmm∗, mmm and yyy are vectors with elements m(xxx∗i ), m(xxxi) and yi
respectively. III is the N×N identity matrix, and KKK∗ and KKK∗∗ have
elements (KKK∗)i, j = k(xxx∗i ,xxx j) and (KKK∗∗)i, j = k(xxx∗i ,xxx

∗
j) respectively.

The GP will approximate the utilization function, and be-
cause the critical decision limit is u = 1− 0 it is reasonable to
select a prior mean function m(xxx)= 1.0, so that the model will re-
vert to suggest unacceptable utilization when it does no have suf-
ficient evidence to suggest otherwise. The covariance function k
governs how much the function can vary between two points that
are close to each other. The Mátern 3/2 kernel, which guarantees
that the function is once differentiable, has been used in [1], and
is defined by

k(x,x′) = σ
2
(

1+
√

3r
)

exp
(
−
√

3r
)
, (6)

where

r =

√
D

∑
i=1

(xi− x′i)2

li
. (7)

σ is the kernel variance and li is the length scale in dimension i.
The GP model is trained by estimating the hyperparameters

θ , which comprises: the kernel variance σ , the length scale pa-
rameters li and the white noise variance c, based on the training
data, typically by maximum likelihood or Bayesian methods [5].
We want to find the set of hyperparameters θmax which maxi-
mizes the probability of observing the training data in the GP
model.

In this work, the Pyro: Deep Universal Probabilistic Pro-
gramming language [6] has been used to train the GP regression
model and make predictions according to Eqn. (5a) and Eqn.
(5b). A detailed tutorial on how to train a GP within this frame-
work can be found on http://pyro.ai/examples/gp.html

OPTIMIZE ACCORDING TO DECISION CONTEXT
As shown in [1], the Bayesian nature of the GP model is

very suitable for exploration-exploitation strategies based on un-
certainty reduction. The GP model established in [1] was estab-
lished by exploring the structural response and utilization of criti-
cal components within the riser stack up according to the method
described by Ranjan et al. [7], focusing on system responses that
correspond to the critical utilization limit u = 1.0.

For the operators, it is important to know where the bound-
ary between acceptable and unacceptable operating conditions
are. As Eldevik and Sætre state in [1] ”We do not want the GP
model to support a decision to abort an operation when in fact it
could have continued safely, but more importantly, we cannot let
the GP model support a decision to continue operation when in
fact it will lead to a structural failure of the riser-well system.”

The method applied focused the simulation efforts in the
vicinity of the critical response utilization u = 1.0. Less effort
was spent on scenarios where the utilization was far away from
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this decision boundary - e.g. in very calm sea-states or in very
bad weather scenarios where the decision is often trivial. See El-
devik and Sætre [1] for more details on the adaptive approach for
optimal reduction of uncertainty used as basis in this work.

Figure 1a shows the prediction from a GP model trained on
500 adaptively selected simulations [1], and the rest of this sec-
tion is a summarization of these results. 5000 simulations of
random weather scenarios have been used to test the efficacy of
the GP model across the entire input-space. The predictions from
the GP model is plotted as blue dots on the y-axis versus the ac-
tual simulation result on the x-axis. Dots that are on the dashed
unity line signify perfect predictions, while the spread around
the dashed unity line illustrate the uncertainty in the GP model
(i.e. either conservative over prediction or non-conservative un-
der prediction by the GP model).

As the decision context is related to the binary outcome
where the prediction is either above or below the critical limit
this can be thought of as a classification problem where a Positive
prediction is where the operator decide to commence or continue
the drilling operation, while a Negative prediction is where the
operator decide to postpone or abort the drilling operation.

For low utilization (See Fig. 1a below the critical limit in
the lower left corner) the weather scenarios are within the opera-
tional window of the drill rig. These are true positive predictions
and far below the limit the outcome of the decision is OK irre-
spective of the uncertainty in the GP model. Similarly, above the
critical limit (in the upper right corner), the utilization is more
than the system can withstand and the decision to discontinue
the operation is the correct one. These are true negative predic-
tions are far above the limit uncertainty in the GP prediction do
not affect the outcome of the decision.

The critical outcomes are where the under- or over-
prediction may lead to a critical False Positive or costly False
Negative decision, and this depends on the magnitude of the pre-
dicted utilization.

For those scenarios where the GP prediction is above the de-
cision criteria, and thus the operation is stopped, while the true
simulated condition was OK leads to a False Negative decision.
These outcomes will be in the upper left corner, shaded yellow,
and signify an unnecessary disconnection and abortion of the op-
eration – incurring additional and unnecessary costs. The most
critical erroneous decisions are those where the prediction sug-
gest that it is OK to continue operation, but where this is not the
case. This leads to a False Positive decision and is illustrated by
predictions that fall in the lower right corner shaded dark red.

With respect to the decision context, the objective of the
work in [1] was to ensure that the rate of False Positive decisions
from the GP model close to∼ 0, while minimizing the rate of the
less critical, but costly, False Negative decisions. To achieve this
the uncertainty in the GP model need to be small close to the de-
cision boundary (small spread of blue dots), while it can accept
a larger spread further from the decision boundary.

Note that all the GP predictions have been moved ”upward”
in the plot corresponding to a 95% confidence level (i.e. 1.645
standard deviation). This has been done to minimize the possi-
bility of the GP model to make a critical under-prediction (red
lower right), while the focused simulation effort close to the crit-
ical limit ensure that this shift does not lead to a lot of unnec-
essary aborted operations because of overly conservative predic-
tions (orange upper left).

Figure 1b shows the corresponding confusion matrix to the
decision outcomes discussed above. The numbers shows the
fraction of GP predictions which lead to correct and erroneous
decisions. See [1] for details on how the optimization of simula-
tion efforts has been done when training the GP model to ensure
safe operations with ∼ 0% critical False Positive decisions and
only 0.9% conservative False Negative decisions.

Note that it is imperative that machine-learned models used
for safety-critical systems incorporate a measure of risk, i.e. can
quantify the risk of making erroneous predictions [8]. The abil-
ity of probabilistic methods like GP models to quantify uncer-
tainty is key to enable such a risk measure. In this work, the risk
measure is the uncertainty related to making the wrong decision
compared to the consequence of making that erroneous decision,
i.e. the False Positive or False Negative decisions.

As noted in [1] the 5000 samples shows a reasonable un-
certainty level for all the sampled weather scenarios, but this do
not guarantee that the model is sufficiently good for all weather
conditions that might be experienced in the future. In the next
section we expand on how these results can be used by the op-
erator in the dynamic decision context they continuously need to
assess. As a GP model is fast and computationally inexpensive,
it can act as a real-time support tool when combined with online
forecast services and on-demand simulation capabilities. And, it
can be used to guide the selection of specific simulation scenar-
ios to reduce the uncertainty in forecasted utilization that is not
sufficiently low based on the current knowledge base.

DYNAMIC DECISION CONTEXT
Weather and sea states are stochastic in nature, and it is dif-

ficult to have long-term forecasts with the necessary accuracy
for good decision support prior to any drilling operation of some
length. However, the forecasts are usually sufficiently accurate
for the next 24 hour period, and this time horizon is long enough
to run a few simulations or prepare a disconnect of the riser from
the well. Figure 2 shows a typical marinogram from the Nor-
wegian online weather forecast service www.yr.no downloaded
December 9th 2019.

The forecasted sea state parameters for the next four days
and typical operational pressure of 31 MPa and a positioning lim-
itation of 14 m offset is inputted to the GP model to produce a
utilization forecast as shown in Fig. 3. The GP model outputs
an hourly mean prediction (dark blue line denoted ”mu”) and

4 Copyright c© 2020 by ASME



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 unity
GP pred.

Simulated

Pr
ed

ic
te

d

(a) Prediction vs. simulation (b) Confusion matrix

FIGURE 1: GP PREDICTION VS. SIMULATION RESULTS OF UTILIZATION [1].

FIGURE 2: MARINOGRAM FROM WEATHER SERVICE WWW.YR.NO.
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FIGURE 3: GP PREDICTION OF UTILIZATION FOR THE GIVEN WEATHER FORECAST.

its associated standard deviation (light blue shaded area denoted
”mu+std”) of the utilization. The red solid line denoted ”limit” is
the critical utilization threshold of u = 1.0. This forecast of uti-
lization corresponding to the relevant forecasted weather-states
makes it possible to have a much more dynamic view of the op-
erational limitations than current approaches which are, to a large
extent, based on worst case combinations of input data.

The figure also mark three points in the utilization forecast
where the uncertainty in the prediction affects the decision sig-
nificantly, and where reduced uncertainty would affect this de-
cision the most (black dots). As this example shows, the mean
utilization prediction is just below the critical threshold for the
entire forecast. However, at three times the uncertainty in the
prediction is so large that a significant portion of the distribution
is above the threshold. This increase in uncertainty is most likely
due to a lack of simulations results for the relevant combinations
of weather data, rig offset and internal riser pressure. As stated
initially, it is not possible to run simulations for all possible in-
put combinations (i.e. evaluate f (xxx)∀xxx), and thus some weather
scenarios will not have been evaluated prior to commencing op-
eration. No matter which exploration strategy is used to establish
the initial data set (e.g. factorial approaches, random approaches,
or adaptive approaches) there will be parts of the input space that
has not been explored and where the surrogate model must ex-
trapolate. These weather scenarios will, in a Bayesian frame-
work, have a larger associated uncertainty.

EFFECT OF REDUCING UNCERTAINTY
The benefit of Bayesian methods, compared to ML methods

that do not provide an uncertainty estimate, is that it is able to
identify scenarios with higher uncertainty. Based on this, it is
possible, during operations, to update the data set with simula-
tions which specifically probe the forecasted weather scenarios

with the high uncertainty close to the critical limit. This is a
significant advantage compared to the current practice where all
simulations are done prior to commencing operation.

If we look at the three points in Fig. 3 marked as hav-
ing a critical uncertainty, these points have been selected based
on a criteria where the upper estimate of the utilization includ-
ing uncertainty (”mu+std”) is close to or above the critical limit
(> ulimit−εub) while there still is a significant portion of the dis-
tribution that predicts an acceptable utilization (< ulimit − εlb).
This can be expressed formally by:

µ fff ∗|D+Σ fff ∗|D > ulimit − εub and (8a)
µ fff ∗|D−Σ fff ∗|D < ulimit − εlb (8b)

Here εub controls how close to the critical limit an upper bound
(ub) of the predicted utilization should be, and εlb controls how
far below the critical limit a lower bound (ub) of the predicted
utilization should be, to justify spending simulation effort at this
weather scenario.

If we can reduce the uncertainty for these weather scenarios
in time for them to occur, we might be able to continue operating
even though the initial prediction supports a decision to discon-
nect. The first of the three selected weather scenarios are 36
hours from the time of the forecast. This is enough to run a sim-
ulation for these specific weather scenarios, and thus potentially
reduce the uncertainty of the utilization prediction, increasing the
confidence in the decision to either disconnect and abort or con-
tinue the operation.

Utilizing the Bayesian nature of the trained GP model, we
can test how much the uncertainty will be affected by getting
one or more additional simulation results. If we assume that the
three identified scenarios with the highest associated uncertainty
would result in the mean value predicted by the GP model, we
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can update the model with these observations, and get a quick
estimate of how the uncertainty of the entire forecast would be
affected. Figure 4 shows the effect of adding one, two, or three
hypothetical simulation results.

Note that these hypothetical simulation results have not yet
actually been run, and the uncertainty reduction is only illustrat-
ing how the overall uncertainty may be affected by added infor-
mation.

In this example, it is clear that without simulating additional
weather scenarios, the uncertainty in the predicted utilization for
the forecasted weather suggests that the rig need to disconnect
from the well. However, it also suggests that if three specific
weather scenarios can be simulated within the next 24 hours, this
might produce the evidence needed to be able to continue the
drilling operations with necessary confidence.

CONCLUDING REMARKS
In this work we have showed the efficacy of probabilistic

machine learning, and more specifically Gaussian Process re-
gression, with respect to guiding optimal simulation efforts and
real-time decision support for offshore drilling operations. As
this is a safety-critical operation, an uncertainty measure is es-
sential when applying data-driven methods in real-time decision
support.

• Gaussian Process regression is well suited as an emulator for
complex simulations of critical response.

• The Bayesian nature of GP models and its uncertainty es-
timate is well suited to implement in the objective function
of information-based sequential data exploration. This en-
ables focused simulation efforts towards consequential sce-
narios rather than spending a lot of simulation effort in non-
consequential scenarios.

• Due to the reduced uncertainty close to the critical decision
criteria, an upper confidence bound of the GP model predic-
tion enables the engineer to reduce the probability of critical
under-prediction while at the same time limit its effect on
overly conservative predictions.

• Combining a trained GP model with real-time operational
data and forecasted weather scenarios gives a powerful and
easy-to-use decision support for the operator.

• Clear communication of where the uncertainty of the model
prediction is high can be used to trigger simulations that
specifically targets the uncertain scenarios. This might pro-
vide the evidence needed to operate through weather that
previously would have called for an aborted operation.

It is clear that added information will result in higher con-

fidence in critical decisions. Making the relevant information
available to the decision maker in clear terms increases the po-
tential for optimal decision making, and reduce the number of
unnecessary disconnections.

Note, however, that these results only illustrate how an op-
timal decision support may be achieved, and that the confidence
of the decision also needs to take into account the accuracy of
the simulation model(s) and weather forecasts in addition to the
prediction uncertainty.
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(a) One additional point
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(b) Two additional points
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(c) Three additional points

FIGURE 4: EFFECT ON UNCERTAINTY IN PREDICTION IF THREE MORE SIMULATIONS WHERE RUN FOR SCENARIOS
WITH HIGH UNCERTAINTY
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