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All standard references for 
ship energy efficiency, such 
as the IMO greenhouse gas 

(GHG) report or the the Oil Companies 
International Marine Forum (OCIMF) 
study for emission-mitigating measures, 
rank trim optimisation highly as a 
recommended measure.

Indeed, trim optimisation is easy to refit 
and generally gives short payback times, 
typically in the order of several months. 
But, customers are faced with an ever 
increasing array of vendors which use 
incomprehensible jargon. Should I take 
a “dynamic performance model based on 
advanced machine-learning technology” 
or rather the “RANSE with VoF”?

Simple advice: Don’t be blinded by 
science; don’t be impressed by a smoke 
screen of jargon. You don’t need to 
programme the software; you just want 
to understand the basic principles and the 
pros and cons of the different approaches. 

The following gives an introduction 
to available options, explains some of 
the jargon and discusses strengths and 
weaknesses of the different approaches.  

A knowledge base is crucial
There are several commercial trim 
optimisation tools on the market. These 
vary in price, user friendliness, fundamental 
approach and performance. However, they 
all combine two key elements:
1.	A ship specific database (often called 

the hydrodynamic “knowledge base”) 
for resistance or power as function of 
operational parameters

2.	A user interface displaying the trim 
recommendation. Virtually all systems 
use an intuitive traffic-light scheme for 
good, acceptable and poor trim options.

Key operational parameters considered 
are speed, displacement (respectively 
draft) and in rare cases also water depth. 

Other factors, such as seaway, are seen 
as secondary for trim optimisation and 
therefore not considered. For certain 
cases, such as ferries or ships trading 
frequently in shallow waters (e.g. Baltic 
Sea), the inclusion of water depth as a 
parameter makes sense. For most other 
ships, water depth may be neglected. 
On very shallow water, aspects of safe 
manoeuvring overrule energy efficiency 
considerations. 

The hydrodynamic knowledge base 
should be a dense matrix of speed, trim 
and draft values. Its range should cover 
all feasible operational combinations. 
Typically this requires 300-400 data 
sets (combinations of trim, draft and 
speed) for deep water, and 3-5 times as 
many if also shallow water variations 
are to be covered. The discrete data sets 
are connected by smooth interpolation 
(multi-dimensional response surface in 
jargon), allowing consistent interpolation 
for whatever operational conditions are 
specified by the user.

While each trim optimisation tool 
must have a hydrodynamic knowledge 
base, the chosen approach to generate 
this knowledge base decides costs and 
performance of a trim optimisation system.

First school, then work
There  are  t wo  f und ament a l ly 
different approaches to develop trim 
optimisation tools. The first group 
of systems is based on a “laboratory” 
hydrodynamic model which creates 
the knowledge base systematically 
and completely,  before the trim 
optimisation software is used. 

The system goes to school first and 
learns the knowledge base before 
being sent out to the real world. This 
school training may be through model 
tests or numerical simulations. As this 
approach does not require interfacing 
with onboard systems or sensors, it 
makes installations much more cost 
effective on most ships, especially for 
fleets of sister vessels. However, the 

Volker Bertram, from the Department of Mechanical and Mechatronic 
Engineering at the University of Stellenbosch and DNV GL sheds some light 
on the dark arts of trim optimisation

Trim Optimisation – Don’t blind me with 
science!

Screenshot of trim assistant software ECO-Assistant

Feature 2 | germany

NA Sept 14 - p66+68.indd   66 13/08/2014   15:22:01



68 The Naval Architect  September 2014

Feature 2 | germany

Fe
a

tu
re

 2

approach requires a geometry model 
of the hull, which may have to be 
re-engineered from available cross 
sections and main dimensions or from 
3D scanning. 

Model tests are in principle an 
option, but the creation of dense 
knowledge base involves much more 
time and cost than CFD (computational 
fluid dynamics). In addition, model 
tests suffer from scale effects (different 
wave breaking from full scale ship) 
and have thus also a slight accuracy 
handicap. Hence, some of the older 
trim optimisation systems were based 
on model tests, but today CFD-based 
approaches are now preferable.

Older CFD approaches used simpler 
flow models (using jargon such as 
potential f low, panel or Rankine 
singularity methods). These fail for 
breaking waves and have poor or 
no propeller models, leading to less 
accurate results. Better flow models 
give more accurate results and thus 
better trim recommendations and 
higher fuel savings.

Such high-f idelity simulat ions 
(using jargon such as full-scale RANSE 
simulations, viscous CFD, two-phase 
f low, Volume-of-Fluid (or VoF) 
method) may be more aptly called 
“numerical sea trials” than “numerical 
towing tank” tests, as they mimic the 
full-scale ship rather than the scaled-
down model of a model basin. They 
are capable of modelling breaking 
waves accurately, which is essential 
in conditions where bulbous bows 
partially emerge or transom sterns 
partially immerse. 

Learning on the job – Beware 
of incomplete training 
The second group of trim optimisation 
systems is based on system identification 
of the actual ship. Typically some 
machine learning techniques are 
employed. This approach does not need 
any information about the ship hull 
geometry. However, it requires rather 
extensive sensor information. Ships 
must then be equipped with advanced 
data acquisition systems. These systems 
have to cope with changing ambient 
conditions (wind, waves, current, water 

temperature, etc.), which affect the 
resistance of the ship.

Even if sophisticated correction 
methods are used, the uncertain nature 
of the ambient conditions introduces 
unavoidable scatter in the target data. 
Machine learning techniques perform 
in essence the task of putting a smooth 
“curve” through the scattered data. 
The more parameters are involved, the 
slower the computer learns. Therefore 
machine learning approaches work best 
for ships which feature fewer changes 
in operational and ambient parameters, 
such as ferries or cruise vessels. 

While the first group (model test and 
CFD-based knowledge base) had the 
benefit of a proper school education, the 
second group has to learn on the job. 
Typically there is an apprentice period, 
though: Initial dedicated training periods 
vary draft, trim and speed, ideally during 
days where the ambient conditions do 
not contaminate the data sets too much. 
After that, it is life-long learning to fill 
missing patches in the knowledge base 
and to update existing knowledge. This 
continuous learning is called “dynamic” 
in trim optimisation jargon. 

In a shipping fairy tale one captain 
was faced with a dilemma; the story goes 
like this: Once upon a time, there was a 
shipowner who was looking for the best 
trim optimisation for his vast empire of 
ships. He looked for suitable candidates 
and installed a CFD-based system and a 
machine-learning system on one of his 
ships. One fine day, the captain asked both 
systems for advice. The CFD-based system 
said: 1m down by the bow. The machine-
learning system said: 1m down by the 
stern. Who should the captain trust?

It sounds like a fairy tale, but rumour 
has it that this happened more than 
once. But, the solution to the puzzle 
was that the comparison was made 
shortly after installation. The captain 
had never before driven the ship on 
that draft and at that speed other 
than with trim by stern. The machine 
learning system had, therefore, never 
“seen” that by trimming by bow the 
fuel consumption was lower and picked 
the best solution from its limited 
experience. Its knowledge base was 
patchy and thus its recommendation 

not good. The CFD-based system had 
covered the whole knowledge base 
before installation and thus gave the 
right recommendation. 

In all fairness, had the machine-
learning system been trained on all 
possible conditions, it would have given 
the same recommendation. The vendor 
no doubt wrote this in his instructions. 
But, there is always the danger that we 
don’t read the instructions.

Integrated or stand-alone?
Trim optimisation may come as part of 
larger advisory systems, e.g. coupled with 
stowage planning, voyage optimisation, 
or performance monitoring. Trim 
optimisation software in itself is good, 
but even better if combined properly 
with other functionality. The coupling 
to stowage planning is attractive as 
optimum trim should be achieved 
without extra ballast.

Similarly,  automated recording 
functions are nice to have. The 
automated reporting serves a double 
purpose: as proof of energy efficient 
operation (for SEEMP documentation, 
national and port authorities, between 
charterers and shipowners, charterers 
and cargo owners, etc.) and as incentive 
for increased usage of the system. 

Use with caution and 
exploit economies of scale
Trim optimisation is highly advisable 
for virtually all ship types. CFD-based 
tr im opt imisat ion is  the most 
cost-effective trim optimisation option 
for fleets of sister vessels. Care should 
be taken that the CFD approach used 
is not based on out-dated potential  
flow methods. 

The big advantage of CFD is that 
one can exploit the advantages of 
parallel computing. Dense knowledge 
bases can be typically generated in one 
or two weeks on high-performance 
computers with several thousand 
parallel processors. This is a unique 
advantage over model tests and system 
identification on real ships.  

Machine-learning systems may give 
similarly good results, but must be 
trained properly, which requires more 
time and crew awareness. NA
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